
Server-side 
processing
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Problem 
• HTML is too basic

 Designed to display static page

 Can’t access databases, spreadsheets , etc.

 No security capabilities in HTML it self
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What is Server-Side Processing?
• Technologies for developing web pages that 
include dynamic content—that is web 
applications.

• Can produce web pages that contain information 
that is connection- or time-dependent.

• A key technology for on-line shopping, employee 
directories, personalized and internationalized 
content.
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Serve-Side Scripting 
• Server-side scripting

 Reside on server

 A major use is database access

 Usually generates custom response for clients

 Cross-platform issues not a concern

 Not visible to client

 Only HTML + client-side scripts sent to client
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CGI 
• CGI : Common Gateway Interface

• Set of standard methods and routines used to write stand-alone 
software programs that know how to receive requests from a web 
server and return data to the server.
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CGI (Cont)
• Allow browser to submit data to a program running on the server

 Program is often called a ‘CGI script’

 Typically written in Perl

 Can also be a ‘real’ program (e.g. Written in c)

• Used primarily for form submission

• Output from CGI usually dynamic and therefore not cached
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CGI process flow
• Step 1: A user, accessing an HTTP browser, sends a request to an 

HTTP server via HTML. 
 This HTML includes a request to execute a CGI program, and any 

parameters the CGI program might need.

• Step 2 : The HTTP server receives the request from the browser, 
processes the HTML, and encounters the request to execute a CGI 
program.
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CGI process flow (Cont)
• Step 3: The CGI program executes. In its execution, it may:

 Access no other resources.

 Access database either locally or remotely 

 Access other applications or initiate the execution of other programs

 Access other network resources

• Step 4: The HTTP server receives a result set from the CGI program, 
and sends the data and/or response back to the HTTP  browser via 
HTML

• Step 5: The HTTP, browser receives the HTML sent to it from the 
HTTP server and formats and displays the data received 
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CGI and database
• HTML has no facilities to directly query a database.

• Through CGI, this capability exists.

• By utilizing CGI scripts, a request can be sent from within HTML, 
and processed by HTTP server, to query the database for specific 
information, and then display the result set in dynamically built 
HTML code.
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CGI and database(Cont)
• With this capability there is no need to manually change a web page 

whenever data on that page changes.

• Simply place the data in a database, and build a CGI script to access 
the data and display it dynamically .

• Whenever a request is made to view the page that contains the CGI 
script, the web server initiates a request to database and formats the 
most current data into a dynamic Web page.
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ASP: Active server pages
• A Microsoft server based scripting environment designed for dynamic 

content

• An ASP page in an HTML page that contains server-side scripts that 
processed by the web server before being sent to the user’s browser

• Server-side script run when a bowser requests an .aspx fie from the 
web server

• Generally can only be used on windows servers and web servers
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Example: handling a form data
<% 

IF request (“username”)= “ahmed” && 

request (“password”)= “1234” then 

runDemo()

%>
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PHP
• Initially as a simple set of Perl scripts for tracking accesses to online 

resume

• Php “Personal Home Page Tools”

• A scripting language designed for the web

• Designed similar to Active server pages
 Embed php commands int web pages

• Open sources, low cost

• Interpreted, not compiled
 Cross-Platform

 Embedded in HTML
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Php example
• Embedding php in html

<html>

<body>

<strong> hello world </strong>

<?

echo ‘This is a PHP message!’;

?>

</body>

</html>
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Cookies
• Small piece of data generated by a web server, stored on the client’s 

hard drive.

• Servers as an add-on to the http specification (remember, HTTP by 
itself is stateless)

• Controversial, as it enables web sites to track web users and their 
habits.
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A Cookie’s scenario 
• Web site xyz.com wants to track the number of unique visitors who 

access its site.

• If xyz.com checks the HTTP servers logs, it can be determine the 
number of “hits”, but cannot determine the number of unique 
visitors.

• That’s because HTTP is stateless. It retains no memory regarding 
individual users .

• Cookies provide a mechanism to solve this problem 
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Tracking Unique Visitors 
• Step 1: Person A request home page from xyz.com

• Step 2: xyz.com Web server generates a new unique ID

• Step3 : Server returns home page plus cookie set to the unique ID

• Step 4: Each time person A returns to xyz.com, the browser 
automatically send the cookie along with the GET request.
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Cookie Conversation
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Browser Server

Give me the home page!

Here’s the home page plus a 
cookie

Now, give me the page again 
(cookie is sent automatically)

I’ve seen you before… Here’s the 
page again.



Why use Cookies?
• Tracking unique visitors

• Creating personalized web site

• Tracking users across your site:
 E.g. do users that visit your sports news page as visit your sports store?
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XML
Extensible Markup Language
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Document exchange

XML

Word Processor Spreadsheet

Web Browser
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Components of a document
• Content: the components (words, images, etc). Which make up a 

document.

• Structure: the organization and inter-relationship of the 
components

• Presentation: how a document looks and what processes are 
applied to it.
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Separating these things means…
• Content can be re-used

• Structure can be formally validated

• Presentation can be customized for
 Different media

 Different audiences

• The information can be uncoupled from its processing
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What is metadata?
• Data about data

• Data associated with objects which relieves their potential users of 
having to have full advance knowledge of their existence or 
characteristics.
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What is XML?
• XML stands for EXtensible Markup Language

• It is called extensible because it is no a fixed format like HTML

• XML is set of rules for designing text formats that let you structure 
data

• XML tags are not predefined. You must define your own tags
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What does XML Look Like?
• It is only a text file and it doesn’t require you to have a particular 

operating system or hardware.

<?xml version="1.0"?>

<Document>

<Greeting>

Welcome to XML

</Greeting>

<Message>

This is an XML document. Bet you're surprised.

</Message>

</document>

28



Why XML?
• XML makes the structure of the document explicit to computer 

programs.

• An HTML page encodes information in a form easily processed by 
humans.

• HTML lacks a structure that facilitates information processing.
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Example: It is hard to do the following 
with HTML

• News in HTML:
 What’s the headline of the story? 

 Who is the author?

• Product info in HTML:
 What is the price of the item?

 What category of item is it?

• If you want to publish information in a form that software clients can 
process it
 You need to produce pages in which the structure is explicit for software to 

exploit.

• That’s what XML does.
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The different between HTML and XML?
• HTML was designed to display data and to focus on how data 

looks

• XML was designed to structure data and to focus on what data is
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XML looks like a bit like HTML
• Like HTML , XML makes use of tags (words bracketed by ‘<’ .. ‘>’).

• HTML is a specific markup language that contains a fixed set of 
elements and attributes.
 The tags used to HTML documents and the structure of HTML documents 

are predefined (I.e. <p>, <h1>,…)

• XML uses the tags only to delimit pieces of data , and leaves the 
interpretation of the data completely to the application that reads it.
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XML vs. HTML: Information Storage
• HTML

 Information is stored in HTML in its final form

• XML: 
 Information stored in XML can be presented in a variety of ways for 

different audiences and scenarios , since the data and display are separate.
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XML Rules
• Tags are enclosed in angle brackets.

• Tags come in pairs with start-tags and end-tags.

• Tags must be properly nested.

 <name><email>…</name></email> is not allowed.

 <name><email>…</email><name> is.
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More XML Rules
• Tags are case sensitive.

 <address> is not the same as <Address>

• XML in any combination of cases is not allowed as part of a tag.

• Tags may not contain ‘<‘ or ‘&’.

• Documents must have a single root tag that begins the document.
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XML Files are Trees

address

name email phone birthday

first last year month day
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XML Trees
• An XML document has a single root node.

• The tree is a general ordered tree.
 A parent node may have any number of children.

 Child nodes are ordered, and may have siblings.

• Preorder traversals are usually used for getting information out of 
the tree.
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Steps of creating an XML file 
• Discover (or establish) the structure of your data.

 Use DTD or XML schema

• Build the XML file that holds the data.

• Apply a formatting style to the xml file.
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Document Type Definitions
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Document type definitions
• DTDs (Document Type Definitions) contain a list of element , tags, 

attributes and entity references contained in an XML document and 
describes their relationships to each other.

• Simply, DTD 
 Specifies a list of tags

 Defines the relationships between these tags .
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Document Type Definitions
• A DTD describes the tree structure of a document and something 

about its data.

• There are two data types, PCDATA and CDATA.
 PCDATA is parsed character data.

 CDATA is character data, used about text data not be parsed.

• A DTD determines how many times a node may appear, and how 
child nodes are ordered.
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DTD for address Example
<!ELEMENT address (name, email, phone, birthday)>

<!ELEMENT name (first, last)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT birthday (year, month, day)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT month (#PCDATA)>

<!ELEMENT day (#PCDATA)>
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Structure of a DTD
• A DTD always starts with <! DOCTYPE and always ends with ]>

• Directly after the <! DOCTYPE comes the name of the document 
element followed by a [

• Then comes a list of all elements and attributes contained in the 
XML file, including the document element
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Example of DTD

<!DOCTYPE note
[
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>
]>
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XML: Example of DTD

<!DOCTYPE employees [
<!ELEMENT employees (name,email,tel,fax)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT tel (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
]>

45



Example: XML Structure
<employees>

<name>Karim</name>

<email>karim@yahoo.com</email>

<tel>00202352</tel>

<fax>00202536</fax>

</ employees>
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Where do I get a DTD?
• Industry announcements

• Some recent examples
 Chemical Markup Language(chemical modelling)

 Math Markup Language

 Etc.
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Assignment
• What is XML Schema Definition (XSD)

• Compare it with DTD
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