
Server-side
processing

1

Problem
• HTML is too basic

 Designed to display static page

 Can’t access databases, spreadsheets , etc.

 No security capabilities in HTML it self

2

What is Server-Side Processing?
• Technologies for developing web pages that
include dynamic content—that is web
applications.

• Can produce web pages that contain information
that is connection- or time-dependent.

• A key technology for on-line shopping, employee
directories, personalized and internationalized
content.

4

Serve-Side Scripting
• Server-side scripting

 Reside on server

 A major use is database access

 Usually generates custom response for clients

 Cross-platform issues not a concern

 Not visible to client

 Only HTML + client-side scripts sent to client

5

CGI
• CGI : Common Gateway Interface

• Set of standard methods and routines used to write stand-alone
software programs that know how to receive requests from a web
server and return data to the server.

6

CGI (Cont)
• Allow browser to submit data to a program running on the server

 Program is often called a ‘CGI script’

 Typically written in Perl

 Can also be a ‘real’ program (e.g. Written in c)

• Used primarily for form submission

• Output from CGI usually dynamic and therefore not cached

7

CGI process flow
• Step 1: A user, accessing an HTTP browser, sends a request to an

HTTP server via HTML.
 This HTML includes a request to execute a CGI program, and any

parameters the CGI program might need.

• Step 2 : The HTTP server receives the request from the browser,
processes the HTML, and encounters the request to execute a CGI
program.

8

CGI process flow (Cont)
• Step 3: The CGI program executes. In its execution, it may:

 Access no other resources.

 Access database either locally or remotely

 Access other applications or initiate the execution of other programs

 Access other network resources

• Step 4: The HTTP server receives a result set from the CGI program,
and sends the data and/or response back to the HTTP browser via
HTML

• Step 5: The HTTP, browser receives the HTML sent to it from the
HTTP server and formats and displays the data received

9

10

Web server software

CGI Program

Database or resources

Web browser

Web page created by CGI
program

Web server

CGI program creates Web
page based an data

CGI program accesses
database or other
resources

Web servers software
executes CGI program

URL

CGI and database
• HTML has no facilities to directly query a database.

• Through CGI, this capability exists.

• By utilizing CGI scripts, a request can be sent from within HTML,
and processed by HTTP server, to query the database for specific
information, and then display the result set in dynamically built
HTML code.

11

CGI and database(Cont)
• With this capability there is no need to manually change a web page

whenever data on that page changes.

• Simply place the data in a database, and build a CGI script to access
the data and display it dynamically .

• Whenever a request is made to view the page that contains the CGI
script, the web server initiates a request to database and formats the
most current data into a dynamic Web page.

12

ASP: Active server pages
• A Microsoft server based scripting environment designed for dynamic

content

• An ASP page in an HTML page that contains server-side scripts that
processed by the web server before being sent to the user’s browser

• Server-side script run when a bowser requests an .aspx fie from the
web server

• Generally can only be used on windows servers and web servers

13

Example: handling a form data
<%

IF request (“username”)= “ahmed” &&

request (“password”)= “1234” then

runDemo()

%>

14

PHP
• Initially as a simple set of Perl scripts for tracking accesses to online

resume

• Php “Personal Home Page Tools”

• A scripting language designed for the web

• Designed similar to Active server pages
 Embed php commands int web pages

• Open sources, low cost

• Interpreted, not compiled
 Cross-Platform

 Embedded in HTML

15

Php example
• Embedding php in html

<html>

<body>

 hello world

<?

echo ‘This is a PHP message!’;

?>

</body>

</html>

16

Cookies
• Small piece of data generated by a web server, stored on the client’s

hard drive.

• Servers as an add-on to the http specification (remember, HTTP by
itself is stateless)

• Controversial, as it enables web sites to track web users and their
habits.

17

A Cookie’s scenario
• Web site xyz.com wants to track the number of unique visitors who

access its site.

• If xyz.com checks the HTTP servers logs, it can be determine the
number of “hits”, but cannot determine the number of unique
visitors.

• That’s because HTTP is stateless. It retains no memory regarding
individual users .

• Cookies provide a mechanism to solve this problem

18

Tracking Unique Visitors
• Step 1: Person A request home page from xyz.com

• Step 2: xyz.com Web server generates a new unique ID

• Step3 : Server returns home page plus cookie set to the unique ID

• Step 4: Each time person A returns to xyz.com, the browser
automatically send the cookie along with the GET request.

19

Cookie Conversation

20

Browser Server

Give me the home page!

Here’s the home page plus a
cookie

Now, give me the page again
(cookie is sent automatically)

I’ve seen you before… Here’s the
page again.

Why use Cookies?
• Tracking unique visitors

• Creating personalized web site

• Tracking users across your site:
 E.g. do users that visit your sports news page as visit your sports store?

21

XML
Extensible Markup Language

22

Document exchange

XML

Word Processor Spreadsheet

Web Browser

23

Components of a document
• Content: the components (words, images, etc). Which make up a

document.

• Structure: the organization and inter-relationship of the
components

• Presentation: how a document looks and what processes are
applied to it.

24

Separating these things means…
• Content can be re-used

• Structure can be formally validated

• Presentation can be customized for
 Different media

 Different audiences

• The information can be uncoupled from its processing

25

What is metadata?
• Data about data

• Data associated with objects which relieves their potential users of
having to have full advance knowledge of their existence or
characteristics.

26

What is XML?
• XML stands for EXtensible Markup Language

• It is called extensible because it is no a fixed format like HTML

• XML is set of rules for designing text formats that let you structure
data

• XML tags are not predefined. You must define your own tags

27

What does XML Look Like?
• It is only a text file and it doesn’t require you to have a particular

operating system or hardware.

<?xml version="1.0"?>

<Document>

<Greeting>

Welcome to XML

</Greeting>

<Message>

This is an XML document. Bet you're surprised.

</Message>

</document>

28

Why XML?
• XML makes the structure of the document explicit to computer

programs.

• An HTML page encodes information in a form easily processed by
humans.

• HTML lacks a structure that facilitates information processing.

29

Example: It is hard to do the following
with HTML

• News in HTML:
 What’s the headline of the story?

 Who is the author?

• Product info in HTML:
 What is the price of the item?

 What category of item is it?

• If you want to publish information in a form that software clients can
process it
 You need to produce pages in which the structure is explicit for software to

exploit.

• That’s what XML does.

30

The different between HTML and XML?
• HTML was designed to display data and to focus on how data

looks

• XML was designed to structure data and to focus on what data is

31

XML looks like a bit like HTML
• Like HTML , XML makes use of tags (words bracketed by ‘<’ .. ‘>’).

• HTML is a specific markup language that contains a fixed set of
elements and attributes.
 The tags used to HTML documents and the structure of HTML documents

are predefined (I.e. <p>, <h1>,…)

• XML uses the tags only to delimit pieces of data , and leaves the
interpretation of the data completely to the application that reads it.

32

XML vs. HTML: Information Storage
• HTML

 Information is stored in HTML in its final form

• XML:
 Information stored in XML can be presented in a variety of ways for

different audiences and scenarios , since the data and display are separate.

33

XML Rules
• Tags are enclosed in angle brackets.

• Tags come in pairs with start-tags and end-tags.

• Tags must be properly nested.

 <name><email>…</name></email> is not allowed.

 <name><email>…</email><name> is.

34

More XML Rules
• Tags are case sensitive.

 <address> is not the same as <Address>

• XML in any combination of cases is not allowed as part of a tag.

• Tags may not contain ‘<‘ or ‘&’.

• Documents must have a single root tag that begins the document.

35

XML Files are Trees

address

name email phone birthday

first last year month day

36

XML Trees
• An XML document has a single root node.

• The tree is a general ordered tree.
 A parent node may have any number of children.

 Child nodes are ordered, and may have siblings.

• Preorder traversals are usually used for getting information out of
the tree.

37

Steps of creating an XML file
• Discover (or establish) the structure of your data.

 Use DTD or XML schema

• Build the XML file that holds the data.

• Apply a formatting style to the xml file.

38

Document Type Definitions

39

Document type definitions
• DTDs (Document Type Definitions) contain a list of element , tags,

attributes and entity references contained in an XML document and
describes their relationships to each other.

• Simply, DTD
 Specifies a list of tags

 Defines the relationships between these tags .

40

Document Type Definitions
• A DTD describes the tree structure of a document and something

about its data.

• There are two data types, PCDATA and CDATA.
 PCDATA is parsed character data.

 CDATA is character data, used about text data not be parsed.

• A DTD determines how many times a node may appear, and how
child nodes are ordered.

41

DTD for address Example
<!ELEMENT address (name, email, phone, birthday)>

<!ELEMENT name (first, last)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT birthday (year, month, day)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT month (#PCDATA)>

<!ELEMENT day (#PCDATA)>

42

Structure of a DTD
• A DTD always starts with <! DOCTYPE and always ends with]>

• Directly after the <! DOCTYPE comes the name of the document
element followed by a [

• Then comes a list of all elements and attributes contained in the
XML file, including the document element

43

Example of DTD

<!DOCTYPE note
[
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>
]>

44

XML: Example of DTD

<!DOCTYPE employees [
<!ELEMENT employees (name,email,tel,fax)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT tel (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
]>

45

Example: XML Structure
<employees>

<name>Karim</name>

<email>karim@yahoo.com</email>

<tel>00202352</tel>

<fax>00202536</fax>

</ employees>

46

Where do I get a DTD?
• Industry announcements

• Some recent examples
 Chemical Markup Language(chemical modelling)

 Math Markup Language

 Etc.

47

Assignment
• What is XML Schema Definition (XSD)

• Compare it with DTD

48

